Sensory Integration during Vibration of Postural Muscle Tendons When Pointing to a Memorized Target

نویسندگان

  • Normand Teasdale
  • Mariusz P. Furmanek
  • Mathieu Germain Robitaille
  • Fabio Carlos Lucas de Oliveira
  • Martin Simoneau
چکیده

Vibrating ankle muscles in freely standing persons elicits a spatially oriented postural response. For instance, vibrating the Achilles tendons induces a backward displacement of the body while vibrating the tibialis anterior muscle tendons induces a forward displacement. These displacements have been called vibration induced falling (VIF) responses and they presumably are automatic. Because of the long delay between the onset of the vibration and the onset of the VIF (about 700 ms), and the widespread cortical activation following vibration, there is a possibility that the sensory signals available before the VIF can be used by the central nervous system to plan a hand pointing action. This study examined this suggestion. Ten healthy young participants stood on a force platform and initially were trained to point with and without vision to a target located in front of them. Then, they were exposed to conditions with vibration of the Achilles tendons or tibialis anterior muscle tendons and pointed at the target without vision. The vibration stopped between each trial. Trials with vision (without vibration) were given every five trials to maintain an accurate perception of the target's spatial location. Ankle vibrations did not have an effect on the position of the center of foot pressure (COP) before the onset of the pointing actions. Furthermore, reaction and movement times of the pointing actions were unaffected by the vibration. The hypotheses were that if proprioceptive information evoked by ankle vibrations alters the planning of a pointing action, the amplitude of the movement should scale according to the muscle tendons that are vibrated. For Achilles tendon vibration, participants undershot the target indicating the planning of the pointing action was influenced by the vibration-evoked proprioceptive information (forward displacement of the body). When the tibialis anterior were vibrated (backward displacement of the body), however, shorter movements were also observed. Longer movements would have increased the backward response of the sensed body movement. Thus, it is possible that pointing actions were adjusted on the basis of the expected consequences of the planned pointing action to avoid a response that could have compromised postural stability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vibration-induced postural posteffects.

It generally is known that vibration of various muscles in free-standing subjects evokes a spatially oriented postural response. Furthermore, it recently has been shown that when a vibratory stimulus is terminated, a powerful involuntary contraction of the previously vibrated muscle often occurs that, under the isotonic condition, is accompanied by movement of a limb. The aim of this study was ...

متن کامل

Stance- and locomotion-dependent processing of vibration-induced proprioceptive inflow from multiple muscles in humans.

We performed a whole-body mapping study of the effect of unilateral muscle vibration, eliciting spindle Ia firing, on the control of standing and walking in humans. During quiet stance, vibration applied to various muscles of the trunk-neck system and of the lower limb elicited a significant tilt in whole body postural orientation. The direction of vibration-induced postural tilt was consistent...

متن کامل

Contraction of body representation induced by proprioceptive conflict

Our body is not only an extended object in external space, but also the basis of our sense of self. Proprioceptive signals from muscle spindle organs, specifying body position, play a key role in this unique dual quality of body representation, as they define a ‘here’ or set of locations, where ‘I’ am located [1]. Position information from muscle spindles can be manipulated by vibrating the mus...

متن کامل

Effects of tibialis anterior vibration on postural control when exposed to support surface translations.

The sensory re-weighting theory suggests unreliable inputs may be down-weighted to favor more reliable sensory information and thus maintain proper postural control. This study investigated the effects of tibialis anterior (TA) vibration on center of pressure (COP) motion in healthy individuals exposed to support surface translations to further explore the concept of sensory re-weighting. Twent...

متن کامل

Balancing sensory inputs: Sensory reweighting of ankle proprioception and vision during a bipedal posture task.

During multisensory integration, it has been proposed that the central nervous system (CNS) assigns a weight to each sensory input through a process called sensory reweighting. The outcome of this integration process is a single percept that is used to control posture. The main objective of this study was to determine the interaction between ankle proprioception and vision during sensory integr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2016